Sum Theorem's on Limits - Cauchy's First Limit Theorem

Statement:

If (an) -> l, then (a1+a2+....+an/n) -> l.

Proof:

Case(i):

Let l = 0.  Let, bn = a1+a2+......+an/n.  Let excellon > 0 be given.  Since (an) -> 0, there exist m belongs to N such that mod an < 1/2 excellon for all n>=m ------(1)
Now, Let n>=m,
mod bn = mod a1+a2+......+am+am+1+..........+an/n
            <= mod a1+mod a2+ .......+mod an/n + mod am+1+...........+mod an/n
            = k/n+mod am-1+.......+mod an/n   [where, k=mod a1+mod a2+.......+mod an]
            < k/n+(n-m/n).excellon/2    [by (1)]
            < k/n+excellon/2 -----(2)  [n-m/n <1]
Now, Since (k/n) -> 0, there exist n0 belongs to N such that k/n < 1/2excellon for all n>=n0 ---(3)
Let n1=max{m,n0}, then mod bn < excellon for all n>=n1.  therefore, (bn) -> 0.

Case(ii):

Let, l not= 0, Since (an) -> l.  (an - l) -> 0.
Therefore, ((a1 - l)+(a2 - l)+.....+(an - l)/n) -> l  [by case(i)]
                  (a1+a2+.....an - nl/n) ->0
                   (a1+a2+.....an/n - l) -> 0
                   (a1+a2+......+an/n) -> l
Right Hand Side -> Left Hand Side. if and only if   Left Hand  Side -> Right Hand Side
   L.H -> R.H             iff.     R.H -> L.H

Note:

The converce of the above theorem is not true.

Example:

Consider the (an) = (-1) power n.  Then, bn = a1+a2+......+an/n
                           = {0 if n is ever}
                               {-1/n if n is odd}
Clearly, (bn) -> 0.
(an) is not convergent.
Previous
Next Post »