Statement:
If (an) -> l, then (a1+a2+....+an/n) -> l.
Proof:
Case(i):
Let l = 0. Let, bn = a1+a2+......+an/n. Let excellon > 0 be given. Since (an) -> 0, there exist m belongs to N such that mod an < 1/2 excellon for all n>=m ------(1)
Now, Let n>=m,
mod bn = mod a1+a2+......+am+am+1+..........+an/n
<= mod a1+mod a2+ .......+mod an/n + mod am+1+...........+mod an/n
= k/n+mod am-1+.......+mod an/n [where, k=mod a1+mod a2+.......+mod an]
< k/n+(n-m/n).excellon/2 [by (1)]
< k/n+excellon/2 -----(2) [n-m/n <1]
Now, Since (k/n) -> 0, there exist n0 belongs to N such that k/n < 1/2excellon for all n>=n0 ---(3)
Let n1=max{m,n0}, then mod bn < excellon for all n>=n1. therefore, (bn) -> 0.
Case(ii):
Let, l not= 0, Since (an) -> l. (an - l) -> 0.
Therefore, ((a1 - l)+(a2 - l)+.....+(an - l)/n) -> l [by case(i)]
(a1+a2+.....an - nl/n) ->0
(a1+a2+.....an/n - l) -> 0
(a1+a2+......+an/n) -> l
Right Hand Side -> Left Hand Side. if and only if Left Hand Side -> Right Hand Side
L.H -> R.H iff. R.H -> L.H
Note:
The converce of the above theorem is not true.
Example:
Consider the (an) = (-1) power n. Then, bn = a1+a2+......+an/n
= {0 if n is ever}
{-1/n if n is odd}
Clearly, (bn) -> 0.
(an) is not convergent.