I am proof this statement, please following:
Let (an) be a Convergent Sequence. If possible let l1 and l2 be two different limits of (an). Let excellon>0
be given. Since, (an)->l1, there exist a natural number n1 such that mod an-l1 < 1/2 excellon for all n>=n1. Since, (an)->l2, there exist a natural number n2 such that mod an-l2 < 1/2 excellon for all n>=n2.
Let m=max{n1,n2}.
Then, mod l1-l2 = mod l1-am+am-l2
<= mod am-l1 + mod am-l2
< 1/2 excellon+1/2 excellon =excellon
Therefore, mod l1-l2 < excellon, and these true for every excellon>0.
Clearly, these possible if and only if l1-l2=0. then, l1=l2.
Examples:
(i) lim n->infinity 1/n=0 (or) (1/n)->0.
Proof:
Let excellon >0 be given. Then
mod 1/n-0 < excellon
mod 1/n < excellon
1/n < excellon if n > 1/excellon
Hence, if we choose m to be any natural number such that m >1/excellon, then mod 1/n-0 < excellon for all n>m.
(ii) The Sequence ((-1)power n) is not Convergence.
Proof:
Suppose the Sequence ((-1)power n) Convergence to l.
Let excellon >0 be given there exist a natural number m such that mod(-1)power n -l < excellon for all n>=m.
Therefore, mod (-1)power m - (-1)power m+1 = mod (-1)power m -l+l -(-1)power m+1
<= mod (-1)power m -l + mod (-1)power m+1 -l
< excellon +excellon =2excellon.
But, mod (-1)power m - (-1)power m+1 =excellon
2 < 2 excellon
1 < excellon.
Hence the problem.