A SEQUENCE CANNOT CONVERGE TO TWO DIFFERENT LIMITS

I am proof this statement, please following:


Let (an) be a Convergent Sequence.  If possible let l1 and l2 be two different limits of (an).  Let excellon>0
be given.  Since, (an)->l1, there exist a natural number n1 such that mod an-l1 < 1/2 excellon for all n>=n1.  Since, (an)->l2, there exist a natural number n2 such that mod an-l2 < 1/2 excellon for all n>=n2.
Let m=max{n1,n2}.
  Then, mod l1-l2 = mod l1-am+am-l2
                           <= mod am-l1 + mod am-l2
                           < 1/2 excellon+1/2 excellon =excellon
 Therefore, mod l1-l2 < excellon, and these true for every excellon>0.
  Clearly, these possible if and only if l1-l2=0.   then, l1=l2.

Examples:

(i) lim n->infinity 1/n=0 (or) (1/n)->0.

 Proof:

Let excellon >0  be given. Then
    mod 1/n-0 < excellon
    mod 1/n < excellon
    1/n < excellon if n > 1/excellon
Hence, if we choose m to be any natural number such that m >1/excellon, then mod 1/n-0 < excellon for all  n>m.

(ii) The Sequence ((-1)power n) is not Convergence.

 Proof:

Suppose the Sequence ((-1)power n) Convergence to l.
Let excellon >0 be given there exist a natural number m such that mod(-1)power n -l < excellon for all n>=m.
Therefore, mod (-1)power m - (-1)power m+1 = mod (-1)power m -l+l -(-1)power m+1
                                                                        <= mod (-1)power m -l + mod (-1)power m+1 -l
                                                                           < excellon +excellon =2excellon.
                    But, mod (-1)power m - (-1)power m+1 =excellon
                                                   2 < 2 excellon
                                                     1 < excellon.  
     Hence the problem.



Previous
Next Post »