CONVERGENCE SEQUENCE

Definition:

A sequence (an) is convergence to a number l.  If given excellon >0 there exist a positive integer m.  Such that mod an - l < excellon for all n>=m.  l is the limit of the sequence.  And lim n->∞ an=l (or) (an) -> l.
 

Note:

(an) -> l if and only if given excellon>0 there exist a natural number m.  Such that mod an-l< for all n>=m, All but a finite number of terms of the sequence le with in the interval (l-excellon, l+excellon).

Previous
Next Post »